Complete Question
The complete question is shown on the first uploaded image
Answer:
What is the mean of the four sample means is [tex]\= x = 6.125 [/tex]
What is the mean of the four sample variances is [tex]\= x_v = 3.71[/tex]
A sample statistic is an unbiased point estimator if the average value of the sample statistic, obtained over all possible samples, is equal to the population parameter.
A sample statistic is biased if it consistently underestimates or overestimates the corresponding population parameter.
A sample mean (that is, M = sigma X/n) is unbiased estimator of the population mean
A sample variance that is computed as s^2 = SS/(n - 1) is unbiased estimator of the population variance.
Step-by-step explanation:
From the question we are told that
Mean 6.00 6.75 6.50 5.25 6.00
Variance 5.50 2.25 1.67 6.25 4.67
Generally the mean of the four sample means is mathematically represented as
[tex]\= x = \frac{6.00+ 6.75 + 6.50 + 5.25 + 6.00}{4}[/tex]
=> [tex]\= x = 6.125 [/tex]
Generally the mean of the four sample variances is mathematically represented as
[tex]\= x_v = \frac{5.50+ 2.25+ 1.67+ 6.25 +4.67}{4}[/tex]
=> [tex]\= x_v = 3.71[/tex]