Answer:
The answer is below
Explanation:
Given that the mass of the sculpture (m) = 6.2 kg, [tex]\theta_1=12.67^o,\theta_2=16.15^o[/tex]
[tex]Sum\ of\ horizontal\ force\ is\ zero\ hence:\\\\T_1cos(\theta_1)=T_2cos(\theta_2)\\\\T_1=\frac{T_2cos(\theta_2)}{cos(\theta_1)}\\ \\Sum\ of\ vertical\ force\ is\ zero:\\\\T_1sin(\theta_1)+T_2sin(\theta_2)=mg\\\\\frac{T_2cos(\theta_2)}{cos(\theta_1)}sin(\theta_1)+T_2sin(\theta_2)=mg\\\\T_2=\frac{mg}{\frac{cos(\theta_2)}{cos(\theta_1)}sin(\theta_1)+sin\theta_2} \\\\T_2=\frac{6.2*9.81}{\frac{cos(16.15)}{cos(12.67)}sin(12.67)+sin16.15} =123.1\ N\\\\[/tex]
[tex]T_1=\frac{T_2cos(\theta_2)}{cos(\theta_1)}=121.2\ N[/tex]