Respuesta :

Answer:

[tex]n = 304[/tex]

Step-by-step explanation:

Given

[tex]y = -15x - 6[/tex]

[tex]Points: (n,-12) \& (4,8)[/tex]

Required

Determine the value of n

First, we need to determine the slope of the given equation.

An equation is of the form;

[tex]y = m_1x + b[/tex]

Where m = slope.

By comparison.

[tex]m_1 = -15[/tex]

Since the given point and the given equation are perpendicular, then:

[tex]m = -\frac{1}{m_1}[/tex]

[tex]m = -\frac{1}{-15}[/tex]

[tex]m = \frac{1}{15}[/tex]

The slope of the point is calculated as thus:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Where

[tex](x_1,y_1) = (n,-12)[/tex]

[tex](x_2,y_2) = (4,8)[/tex]

[tex]m = \frac{1}{15}[/tex]

So, we have:

[tex]\frac{1}{15} = \frac{8 - (-12)}{4 - n}[/tex]

[tex]\frac{1}{15} = \frac{8 +12}{4 - n}[/tex]

[tex]\frac{1}{15} = \frac{20}{4 - n}[/tex]

Cross Multiply

[tex]4 - n = 20 * 15[/tex]

[tex]4 - n = 300[/tex]

Solve for n

[tex]n = 4 + 300[/tex]

[tex]n = 304[/tex]