Respuesta :
Answer:
[tex]59 + 30c \leq 125[/tex]
2 rooms
Step-by-step explanation:
Given
[tex]Base\ Amount = \$59[/tex]
[tex]Additional = \$30[/tex] per carpet
[tex]Customer\ Budget = \$125[/tex]
Required
Write an inequality to determine the situation
Represent the number of carpets with c
First, we need to determine an expression for the cleaner's charges:
This is:
[tex]59 + 30 * c[/tex]
[tex]59 + 30c[/tex]
Since the customer's budget do not exceed $125.
This implies that the cleaner's charges must be less than or equal to the budget.
So, we have:
[tex]59 + 30c \leq 125[/tex]
Solving further: [Collect Like Terms]
[tex]30c \leq 125 - 59\\[/tex]
[tex]30c \leq 66[/tex]
Divide through by 30
[tex]c \leq 66/30[/tex]
[tex]c \leq 2.2[/tex]
Since number of rooms can't be fraction;
The maximum number of rooms the customer can afford is 2
Answer:
No sé exactamente de qué se trata el ejercicio, hay muchas respuestas posibles
Step-by-step explanation: