Which relationships have the same constant of proportionality between yyy and xxx as the equation y=\dfrac{5}{2}xy= 2 5 ​ xy, equals, start fraction, 5, divided by, 2, end fraction, x? Choose 3 answers: Choose 3 answers: (Choice A) A 5y=2x5y=2x5, y, equals, 2, x (Choice B) B 8y=20x8y=20x8, y, equals, 20, x (Choice C) C (Choice D) D (Choice E) E xxx yyy 111 2\dfrac{1}{2}2 2 1 ​ 2, start fraction, 1, divided by, 2, end fraction 444 101010 777 17\dfrac{1}{2}17 2 1 ​ 17, start fraction, 1, divided by, 2, end fraction

Respuesta :

Answer:

[tex]8y = 20x[/tex]

Step-by-step explanation:

Given

[tex]y=\dfrac{5}{2}x[/tex]

Required

Determine equivalent expressions

A. 5y = 2x

[tex]y=\dfrac{5}{2}x[/tex]

Multiply through by 5

[tex]5 * y=\dfrac{5}{2}x * 5[/tex]

[tex]5y=\dfrac{25}{2}x[/tex]

This is not equivalent

B.  8y = 20x

[tex]y=\dfrac{5}{2}x[/tex]

Multiply both sides by 8

[tex]8 *y=\dfrac{5}{2}x * 8[/tex]

[tex]8y=\dfrac{5 * 8}{2}x[/tex]

[tex]8y=\dfrac{40}{2}x[/tex]

[tex]8y = 20x[/tex]

The other options are not clear.

However, another possible relationship is when

[tex]y=\dfrac{5}{2}x[/tex]is cross multiplied

This gives:

[tex]2y = 5x[/tex]

Answer:

d=          y =x

Step-by-step explanation

i clicked on all the awnser and got it write