Answer:
Step-by-step explanation:
Product of slope of perpendicular lines = -1
6x + 5y = 30
Write this equation in y = mx + b form
5y = -6x + 30
y = [tex]\frac{-6}{5}x+\frac{30}{5}[/tex]
[tex]y=\frac{-6}{5}x + 6[/tex]
Slope of this line m₁ = -6/5
m₁ * m₂ = -1
m₂ = -1÷m₁ = -1 * [tex]\frac{5}{-6}[/tex]
[tex]m_{2}=\frac{5}{6}[/tex] & (-6 , -7)
Equation of the required line: y - y₁ = m (x - x₁)
[tex]y - (-7) = \frac{5}{6}(x - [-6])\\\\y + 7 = \frac{5}{6}x + 6 *\frac{5}{6}\\\\y = \frac{5}{6}x +5-7\\\\y=\frac{5}{6}x-2[/tex]