Answer:
[tex]B= 41[/tex]; [tex]C = 56[/tex]; [tex]A = 83[/tex]
Step-by-step explanation:
Given
[tex]A = 2x + 1[/tex]
[tex]B = x[/tex]
[tex]C = x + 15[/tex]
Required
Arrange the angles from smallest to largest
First, we need to determine the value of x.
Since, it is a triangle:
[tex]A + B + C = 180[/tex]
Substitute values for A, B and C
[tex]2x + 1+ x + x + 15 = 180[/tex]
Collect Like Terms
[tex]2x + x + x = 180 - 15 -1[/tex]
[tex]4x = 164[/tex]
Solve for x
[tex]x= 164/4[/tex]
[tex]x= 41[/tex]
Solve for A, B and C
[tex]A = 2x + 1[/tex]
[tex]A = 2 * 41 + 1[/tex]
[tex]A = 82 + 1[/tex]
[tex]A = 83[/tex]
[tex]B = x[/tex]
[tex]B= 41[/tex]
[tex]C = x + 15[/tex]
[tex]C = 41 + 15[/tex]
[tex]C = 56[/tex]
From Smallest to Largest, we have:
[tex]B= 41[/tex]; [tex]C = 56[/tex]; [tex]A = 83[/tex]