Respuesta :
Answer:
[tex]LCD = 56p^2[/tex]
[tex]Expression = 4p[/tex] --- for 14p
[tex]Expression =7[/tex] ------ for 8p²
Explanation:
Given
[tex]14p = 2(7)(p)[/tex]
[tex]8p^2 = 2(2)(2)(p)(p)[/tex]
Required
Determine the LCD
To determine the LCD, we list out the union of the factors:
i.e.
[tex]LCD = 2 * 7 * 2 * 2 * p * p[/tex]
[tex]LCD = 56 * p^2[/tex]
[tex]LCD = 56p^2[/tex]
To solve the (b) part;
Divide each the LCD by each expression
For 14p;
We have:
[tex]Expression = \frac{56p^2}{14p}[/tex]
[tex]Expression = \frac{4 * 14 * p * p}{14 * p}[/tex]
[tex]Expression = 4 * p[/tex]
[tex]Expression = 4p[/tex]
For 8p²
We have:
[tex]Expression = \frac{56p^2}{8p^2}[/tex]
[tex]Expression = \frac{7 * 8 * p^2}{8 * p^2}[/tex]
[tex]Expression =7[/tex]
Answer:
1. C - 2(2)(2)(7)(p)(p)
2. B - 4p/4p
3. C - 7/7
Explanation:
edge 2020