The prime factorizations of the denominators of and are given below: 14p = 2(7)(p) 8p2 = 2(2)(2)(p)(p) Identify the LCD of and . LCD = What is each expression multiplied by to create an equivalent rational expression containing the common denominator? ( ) = ( ) =

Respuesta :

Answer:

[tex]LCD = 56p^2[/tex]

[tex]Expression = 4p[/tex] --- for 14p

[tex]Expression =7[/tex] ------ for 8p²

Explanation:

Given

[tex]14p = 2(7)(p)[/tex]

[tex]8p^2 = 2(2)(2)(p)(p)[/tex]

Required

Determine the LCD

To determine the LCD, we list out the union of the  factors:

i.e.

[tex]LCD = 2 * 7 * 2 * 2 * p * p[/tex]

[tex]LCD = 56 * p^2[/tex]

[tex]LCD = 56p^2[/tex]

To solve the (b) part;

Divide each the LCD by each expression

For 14p;

We have:

[tex]Expression = \frac{56p^2}{14p}[/tex]

[tex]Expression = \frac{4 * 14 * p * p}{14 * p}[/tex]

[tex]Expression = 4 * p[/tex]

[tex]Expression = 4p[/tex]

For 8p²

We have:

[tex]Expression = \frac{56p^2}{8p^2}[/tex]

[tex]Expression = \frac{7 * 8 * p^2}{8 * p^2}[/tex]

[tex]Expression =7[/tex]

Answer:

1. C - 2(2)(2)(7)(p)(p)

2. B - 4p/4p

3. C - 7/7

Explanation:

edge 2020