Determine whether or not the function is continuous for the given values of X.

f(x) = x^2-25/x-7 :x=0, x=7,x= -5

Is the function continuous at x​=0?

a. ​Yes, the point is​ defined, ​limit f(x) exists, and ​limit f(x) 0. ​(Simplify your​ answer.)
x →c x →0

b. ​No, the function is not continuous at x=0 .

Respuesta :

Answer:

A. ​Yes, the point is​ defined, ​limit f(x) exists, and ​limit f(x) 0.

Step-by-step explanation:

Let be [tex]f(x) = \frac{x^{2}-25}{x-7}[/tex], a rational function is continuous at a value of [tex]x[/tex] if and only if denominator is different from zero. In particullar, [tex]x-7 \neq 0[/tex].

Then, we find that function is continuous for every value of [tex]x[/tex] except [tex]x = 7[/tex]. Thus, the function is continuous at [tex]x = 0[/tex], which is evaluated below:

[tex]f(x) = \frac{(x+5)\cdot (x-5)}{x-7}[/tex]

[tex]f(0) = \frac{(0+5)\cdot (0-5)}{0-7}[/tex]

[tex]f(0) = \frac{(5)\cdot (-5)}{-7}[/tex]

[tex]f(0) = \frac{-25}{-7}[/tex]

[tex]f(0) = \frac{25}{7}[/tex]

Thus, correct answer is A.