Answer:
[tex]Cost= \$47[/tex]
Step-by-step explanation:
Given
Vertices: (−1, 5), (4, 2), and (9, −4)
Cost per foot = $8
Required
Determine the cost of fencing (-1, 5) and (4, 2)
First, we need to determine the distance between (-1, 5) and (4, 2)
Distance, d is calculated as follows:
[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]
Where
[tex](x_1,y_1) = (-1, 5)[/tex]
[tex](x_2,y_2) =(4, 2)[/tex]
So, we have:
[tex]d = \sqrt{(4 - (-1))^2 + (2 - 5)^2}[/tex]
[tex]d = \sqrt{(4 +1))^2 + -3^2}[/tex]
[tex]d = \sqrt{5^2 + -3^2}[/tex]
[tex]d = \sqrt{25 + 9}[/tex]
[tex]d = \sqrt{34}[/tex]
[tex]d = 5.83095189485[/tex]
[tex]d = 5.831[/tex] -- Approximated;
If the cost of 1 foot is $8.
5.831 feet will cost:
[tex]Cost= 5.831 * \$8[/tex]
[tex]Cost= \$46.648[/tex]
[tex]Cost= \$47[/tex] -- Approximated