andee18
contestada

transfer transfer the system of equations by forming a matrix equation.

2x - 3y = 19
x + 2y = -1
he multiplies the left side of the coefficient matrix by the inverse matrix.

how does he proceed to the solution?​

transfer transfer the system of equations by forming a matrix equation2x 3y 19x 2y 1 he multiplies the left side of the coefficient matrix by the inverse matrix class=

Respuesta :

Answer:

Step-by-step explanation:

[tex]\begin{bmatrix}2 & -3\\ 1 & 2\end{bmatrix}^{-1}\times \begin{bmatrix}2 & -3\\ 1 & 2\end{bmatrix}\times \begin{bmatrix}x\\y \end{bmatrix}=\frac{1}{7} \begin{bmatrix}2 & 3 \\ -1 & 2\end{bmatrix}\times \begin{bmatrix}19\\ -1\end{bmatrix}[/tex]  

Since, [tex]\begin{bmatrix}2 & -3\\ 1 & 2\end{bmatrix}^{-1}=\frac{1}{7}\begin{bmatrix}2 & 3\\ -1 & 2\end{bmatrix}[/tex]

And [tex]A^{-1}A=I[/tex]

[tex]\begin{bmatrix}x\\y \end{bmatrix}=\frac{1}{7}\begin{bmatrix}2 & 3\\ -1 & 2\end{bmatrix}\times \begin{bmatrix}19\\-1 \end{bmatrix}[/tex]

[tex]\begin{bmatrix}x\\y \end{bmatrix}=\frac{1}{7}\begin{bmatrix}35\\ -21\end{bmatrix}[/tex]

[tex]\begin{bmatrix}x\\y \end{bmatrix}=\begin{bmatrix}5\\ -3\end{bmatrix}[/tex]                

Therefore, x = 5 and y = -3 will be the value of variables.