WILL MARK BRAINLIEST Solve the following problems. Write the complete proof in your paper homework and for online (only) complete the probing statement (if any) that is a part of your proof or related to it. b Given: FD ⊥ AB ∠A ≅ ∠B Prove: ∠F ≅∠CEF

Sum of the interior angles of any triangle equal 180° .
So ;
A + B + ECB = 180°
A = B = μ
So : 2μ + ECB = 180°
→ ECB = 180° - 2μ
_________________________________
ECF + ECB = 180°
ECF + 180° - 2μ = 180°
ECF = 180° - 180° + 2μ
ECF = 2μ
_________________________________
∆ ADE :
A + D + E = 180°
μ + 90° + E = 180°
E = 180° - 90° - μ
E = 90° - μ
_________________________________
AED + AEF = 180°
90° - μ + AEF = 180°
AEF = 180° - 90° + μ
AEF = 90° + μ
_________________________________
AEF + FEC = 180°
90° + μ + FEC = 180°
FEC = 180° - 90° - μ
FEC = 90° - μ (( # ))
_________________________________
∆ BDF :
B + D + F = 180°
μ + 90° + F = 180°
F = 180° - 90° - μ
F = 90° - μ ((★))
_________________________________
((#)), ((★)) say :
FEC = 90° - μ
F = 90° - μ
So : F =~ FEC
_________________________________
And we're done.
Thanks for watching buddy good luck.
♥️♥️♥️♥️♥️