A triangle has a base 12ft long and an altitude 8ft high. Find the area of the largest rectangle that can be inscribed in the triangle so that the base of the rectangle falls on the base of the triangle.
-ans: 24 sq. ft.

Respuesta :

caylus
Hello,

Let's call x the length of the rectangle and y its height.

Using the theorem of Thales,

[tex] \dfrac{8-y}{8} = \dfrac{x}{12} \\ ==\textgreater \ 8x=96-12y\\ ==\textgreater \ y= 8 -\dfrac{2}{3} x\\ Aera=A(x)=x*y=x*( 8 -\dfrac{2}{3} x)=\dfrac{24}{3}*x-\dfrac{2}{3}*x^2\\ =-\dfrac{2}{3}*(x^2-12x)\\ =-\dfrac{2}{3}*(x^2-12x+36-36)\\ =-\dfrac{2}{3}*(x-6)^2+24\\ =24-\dfrac{2}{3}*(x-6)^2\\ =\dfrac{2}{3}*(72-2(x-6)^2) [/tex]
[tex]\mbox{which is max if x=6 then y=8 - \dfrac{2}{3} *6=4} [/tex]

Max Area=6*4=24 (ft²)



Ver imagen caylus

The inscribed rectangle of the triangle results in a similar triangle towards the vertex of the of the altitude of the given triangle.

Correct Response;

  • The area of the largest rectangle is 24 square feet.

Method used to derive the above response;

Length of the base of the triangle = 12 ft.

Altitude of the triangle = 8 ft.

Required:

The area of the largest rectangle that can be inscribed in the triangle.

Solution:

Let x represent the width of the rectangle, let y represent the height, and let the base of the triangle be on the horizontal x-axis.

From the attached drawing of the situation, we have;

ΔABC is similar to ΔADE

Which gives;

[tex]\displaystyle \frac{8 - y}{8} = \mathbf{\frac{x}{12}}[/tex]

12·(8 - y) = 8·x

[tex]\displaystyle 8 - y = \frac{8 \cdot x}{12} = \frac{2}{3} \cdot x[/tex]

[tex]\displaystyle y = \mathbf{ 8 - \frac{2}{3} \cdot x}[/tex]

Area of the rectangle, A = x × y

Therefore;

[tex]\displaystyle The \ function \ for \ the \ area \ of \ the \ rectangle, \, A = \displaystyle x \times \left( 8 - \frac{2}{3} \cdot x\right) = \mathbf{8 \cdot x - \frac{2}{3} \cdot x^2}[/tex]

The leading coefficient of the quadratic function for the area is negative, therefore, at the maximum area, we have;

  • [tex]\displaystyle \frac{d}{dx} (A_{max} ) = 0 = \frac{d}{dx} \left( 8 \cdot x - \frac{2}{3} \cdot x^2 \right) = \mathbf{8 - \frac{4}{3} \cdot x}[/tex]

Which gives;

[tex]\dfrac{4}{3} \cdot x = 8[/tex]

x = 8 × 3 ÷ 4 = 6

The width of the rectangle that gives the maximum area, x = 6 feet

[tex]\displaystyle y = 8 - \frac{2}{3} \cdot x = 8 - \frac{2}{3} \times 6 = 4[/tex]

The height of the rectangle when the area is maximum, y = 4 feet

  • The largest area of the rectangle, [tex]A_{max}[/tex] = 6 ft. × 4 ft. = 24 ft.²

Learn more about finding the maximum value of a function here:

https://brainly.com/question/5722003

Ver imagen oeerivona