which of the following is an equivalent function to the function below? f(x) = 50(1.05)12x f(x) = 50(1.7959)x f(x) = 50(12.6000)x f(x) = 600(1.05)x f(x) = 4.2(1.05)x

Respuesta :

caylus
Hello,

Since 1.05^12=1,795856326022129150390625≠1.7959

50*1.05^(12x)=50*((1.05^^12)^x)=50*1.759^x

Answer A


Answer:

The equivalent function is [tex]f(x)=50(1.7959)^{x}[/tex]

Step-by-step explanation:

We have been given the function  [tex]f(x)=50(1.05)^{12x}[/tex]

and we have to find an equivalent function. In order to find the same first of all  we can use the below exponent property.

[tex]x^{ab} = (x^{a})^b[/tex]

Using the above property the given function will become,

 [tex]f(x)=50(1.05)^{12x}=50((1.05)^{12})^x[/tex]

Now [tex](1.05)^{12}=1.7959[/tex]

So, the equivalent function is [tex]f(x)=50(1.7959)^{x}[/tex]

Thus, Option (1) is correct.