Give the equation of a line that goes through the point ( − 21 , 2 ) and is perpendicular to the line 7 x − 4 y = − 12 . Give your answer in slope intercept form

Respuesta :

Given:

Equation of line [tex]7x-4y=-12[/tex].

To find:

The equation of line  that goes through the point ( − 21 , 2 ) and is perpendicular to the given line.

Solution:

The given equation of line can be written as

[tex]7x-4y+12=0[/tex]

Slope of line is

[tex]\text{Slope}=-\dfrac{\text{Coefficient of x}}{\text{Coefficient of y}}[/tex]

[tex]m_1=-\dfrac{7}{(-4)}[/tex]

[tex]m_1=\dfrac{7}{4}[/tex]

Product of slopes of two perpendicular lines is -1. So, slope of perpendicular line is

[tex]m_1m_2=-1[/tex]

[tex]m_2=-\dfrac{1}{m_1}[/tex]

[tex]m_2=-\dfrac{4}{7}[/tex]           [tex][\because m_1=\dfrac{7}{4}][/tex]

Now, the slope of perpendicular line is [tex]m_2=\dfrac{4}{7}[/tex] and it goes through (-21,2). So, the equation of line is

[tex]y-y_1=m_2(x-x_1)[/tex]

[tex]y-2=-\dfrac{4}{7}(x-(-21))[/tex]

[tex]y-2=-\dfrac{4}{7}x-\dfrac{4}{7}(21)[/tex]

[tex]y-2=-\dfrac{4}{7}x-12[/tex]

[tex]y=-\dfrac{4}{7}x-12+2[/tex]

[tex]y=-\dfrac{4}{7}x-10[/tex]

Therefore, the required equation in slope intercept form is [tex]y=-\dfrac{4}{7}x-10[/tex].