A steel pipe of 400-mm outer diameter is fabricated from 10-mm-thick plate by welding along a helix that forms an angle of 20° with a plane perpendicular to the axis of the pipe. Knowing that a 300-kN axial force P is applied to the pipe. Determine the normal and shearing stresses in directions respectively normal and tangential to the weld.

Respuesta :

Explanation:

Outer di ameter [tex]d_{0}=400 \mathrm{mm}[tex] Thickness of the cylinder [tex]t=10 \mathrm{mm}[/tex]

[tex]\therefore[tex] Inner diam eter [tex]d_{i}=d_{0}-2 t=400-2 \times 10[/tex]

[tex]d_{1}=380 \mathrm{mm}[/tex]

Given loading on the cylinder [tex]P=300 \mathrm{kN}[/tex] Helix an gle of the weld form [tex]\theta=20^{\circ}[/tex]

(i) Normal stress on the plane at angle [tex]\theta=20^{\circ}[/tex] is

[tex]\sigma=\frac{P \cos ^{2} \theta}{A_{0}}[/tex]

[tex]\text { Where } A_{0}=\frac{\pi}{4}\left(d_{0}^{2}-d_{1}^{2}\right)[/tex]

[tex]\quad=\frac{\pi}{4}\left(400^{2}-380^{2}\right)[/tex]

[tex]=12252.21 \mathrm{mm}^{2}[/tex]

[tex]=12.25221 \times 10^{-9} \mathrm{m}^{2}[/tex]

[tex]\sigma=\frac{-300 \times 10^{2} \times \cos ^{2} 20}{12.25221 \times 10^{-1}}[/tex]

[tex]=-21.6 \mathrm{MPa}[/tex]

(ii) Shear stress along an angle of [tex]\theta=20^{\circ}[/tex] is [tex]\tau=\frac{P}{A_{0}} \cos \theta \sin \theta[/tex]

[tex]=\frac{-300 \times 10^{-1} \times \cos 20 \times \sin 20}{12.25221 \times 10^{-3}}[/tex]

[tex]=-7.86 \mathrm{MPa}[/tex]

Lanuel

The normal and shearing stresses are equal to -21.63 MPa and -7.84 Mpa respectively.

Given the following data:

  • Outer diameter = 400 mm.
  • Thickness (t) = 10 mm.
  • Angle of inclination = 20°.
  • Axial force = -300 kN.

Conversion:

  • Outer radius = [tex]\frac{Outer diameter}{2} =\frac{400}{2}[/tex] = 200 mm to m = 0.2 meter.
  • Thickness (t) = 10 mm to m = 0.01 meter.

How to calculate normal stress.

Mathematically, the normal stress is given by this formula:

[tex]\sigma = \frac{P}{A} cos^2 \theta[/tex]   ....equation 1.

Where:

  • P is the axial force.
  • A is the cross-sectional area.

Note: The steel pipe is hollow and as such its area would be calculated as that of a disk.

Generally, a disk can be described as a large outer circle with its smaller-inner circle expunged. Thus, the area of a disk is given by:

[tex]Area = \pi (r_o^2-r_i^2)[/tex]    .....equation 2.

Where:

  • [tex]r_i[/tex] is the inner radius.
  • [tex]r_o[/tex] is the outer radius.

For the inner radius:

[tex]r_i = r_o-t\\\\r_i=0.2-0.01\\\\r_i=0.19\;m[/tex]

Substituting the parameters into eqn. 2, we have:

[tex]Area = 3.142 (0.2^2-0.19^2)\\\\Area = 3.142(0.04-0.0361)\\\\Area = 3.142 \times 0.0039\\\\Area = 0.0123\;m^2[/tex]

For the normal stress:

[tex]\sigma = \frac{-300 \times 10^3}{0.0123} \times cos^2 20\\\\\sigma =-24.49 \times 10^{6} \times 0.8830\\\\\sigma =-21.63 \times 10^{6}\;Pa[/tex]

Note: 1 MPa = [tex]1\times 10^6\;Pa[/tex]

Normal stress = -21.63 MPa.

How to calculate shearing stress.

We would derive the formula for shearing stress from the normal stress formula by applying trigonometric functions.

Note: [tex]sin2 \theta = 2sin \theta cos \theta[/tex]

[tex]\tau = \frac{P}{A} sin \theta cos \theta\\\\\tau = \sigma \times \frac{sin \theta}{cos \theta}\\\\\tau = \frac{P}{A} cos^2 \theta \times \frac{sin \theta}{cos \theta}\\\\\tau = \frac{P}{2A} sin2\theta[/tex]

Substituting the parameters into the formula, we have;

[tex]\tau = \frac{-300 \times 10^3}{2 \times 0.0123} \times sin 2(20)\\\\\tau = \frac{-300 \times 10^3}{0.0246} \times sin (40)\\\\\tau = -12.2 \times 10^6 \times 0.6428\\\\\tau = -7.84 \times 10^6\;Pa[/tex]

Note: 1 MPa = [tex]1\times 10^6\;Pa[/tex]

Shearing stress = -7.84 Mpa.

Read more on normal stress here: https://brainly.com/question/7958709

Ver imagen Lanuel