Given:
Area of a circle, A=50.265 sq. units.
Radius of circle, r = 4 units.
To find:
The value of π to the nearest thousandth.
Solution:
Formula for area of a circle is
[tex]A=\pi r^2[/tex]
[tex]\dfrac{A}{r^2}=\pi [/tex]
[tex]Ar^{-2}=\pi [/tex]
Now, using [tex]Ar^{-2}[/tex] expression, we can find the value of π.
[tex]\pi=50.265904(4)^{-2}[/tex]
[tex]\pi=\dfrac{50.265904}{4^2}[/tex]
[tex]\pi=\dfrac{50.265904}{16}[/tex]
[tex]\pi=3.141619[/tex]
Approximate the value to the nearest thousandth (three digits after decimal).
[tex]\pi\approx 3.142[/tex]
Therefore, the approximated value of π is 3.142.