Respuesta :

Answer:

[tex]\displaystyle{\int \ln(8x)\, dx}=x\ln(8x)-x+C[/tex]

Step-by-step explanation:

So we have the integral:

[tex]\displaystyle{\int \ln(8x)\, dx}[/tex]

First, let's do a substitution to simplify the inside of natural log. Let y equal to 8x. So:

[tex]y=8x[/tex]

Differentiate with respect to x:

[tex]dy=8\, dx[/tex]

Divide both sides by 8:

[tex]\frac{1}{8}\, dy=dx[/tex]

Substitute this into our original integral. Therefore:

[tex]\displaystyle{=\int \frac{1}{8}\ln(y)\, dy[/tex]

Move the co-efficient outside:

[tex]\displaystyle{=\frac{1}{8}\int\ln(y)\, dy[/tex]

Now, perform integration by parts. Integration by parts is as follows:

[tex]\displaystyle{\int u\, dv=uv-\int v\, du}[/tex]

Note that our integral is the same as saying:

[tex]\displaystyle{=\frac{1}{8}\int 1\cdot\ln(y)\, dy[/tex]

Let u equal the natural log and let dv equal 1 dy. Therefore:

[tex]u=\ln(y)[/tex]

Differentiate:

[tex]du=\frac{1}{y}\, dy[/tex]

And let dv equal 1 dy. Thus:

[tex]dv=1\, dy[/tex]

Integrate:

[tex]v=y[/tex]

Perform integration by parts:

[tex]\displaystyle{=\frac{1}{8}(y\ln(y)-\int y(\frac{1}{y})\, dy}[/tex]

Simplify:

[tex]\displaystyle{=\frac{1}{8}(y\ln(y)-\int 1\, dy)}[/tex]

Evaluate the integral:

[tex]\displaystyle{=\frac{1}{8}(y\ln(y)-y)}[/tex]

Substitute 8x for y:

[tex]\displaystyle{=\frac{1}{8}(8x\ln(8x)-8x)}[/tex]

Distribute:

[tex]=x\ln(8x)-x[/tex]

Constant of Integration:

[tex]=x\ln(8x)-x+C[/tex]

And we have our answer.

Edit: Typo