Respuesta :

Space

Answer:

x = ±4

Step-by-step explanation:

Step 1: Write out quadratic

2x² - 5 = 27

Step 2: Add 5 to both sides

2x² = 32

Step 3: Divide both sides by 2

x² = 16

Step 4: Take the square root of both sides

x = ±4

∴ x can equal -4 or 4

Answer:

[tex] \boxed{ \bf \huge \: x =4}[/tex]

[tex] \rm \: Or,[/tex]

[tex] \boxed{\bf \huge \: x = - 4}[/tex]

Step by step explanation:

Given Equation is :-

[tex]\sf \implies \: 2 {x}^{2} - 5 = 27[/tex]

We need to find the value of [tex]x[/tex] using Quadric formula.

Firstly, Subtract 27 from both of the side(s):-

[tex]\sf \implies2 {x}^{2} - 5 - 27 = 27 - 27[/tex]

On Simplification:-

Add -5-27 as (-) and (-) equals to (+). -5-27 would be represented as 5+27, which results to 32.

[tex]\sf\sf \implies2 {x}^{2} - 32 = 0[/tex]

Then, for this equation , a=2, b=0, c=-32.

Put the values :-

That is,

[tex]\sf \implies2 {x}^{2} + 0x + ( - 32) = 0[/tex]

As we know, that the quadratic formula is:-

[tex]\sf \implies \: x = \dfrac{ -b \pm \sqrt{b {}^{2} - 4ac } }{2a} [/tex]

Put the values :-

[tex]\sf \implies \: x = \dfrac{ - 0 \pm \sqrt{0 {}^{2} \: - 4(2) ( - 32)} }{2(2)} [/tex]

On Simplification:-

[tex]\sf \implies \: x = \dfrac{ - 0 {}^{} \pm \sqrt{ {0 } - \: 8 \times - 32}}{2 \times 2} [/tex]

[tex]\sf \implies \: x = \dfrac{ - 0 \pm \: \sqrt{ - 8 \times - 32} }{4}[/tex]

[tex]\sf \implies x = \dfrac{ - {0}^{}\pm \: \sqrt{ + 256} }{4} [/tex]

As 0 has no value here,

[tex]\sf \implies \: x = \dfrac{ \pm \sqrt{256} }{4} [/tex]

On cancelling,

Remove the square of 256 ( √256)

[tex]\sf \implies \: x = \dfrac{ \pm \cancel{ \: 256}}{ \cancel4} [/tex]

[tex]\sf \implies \: x = ± + 4[/tex]

It may be represented as,

[tex]\sf \implies \: x = - 4[/tex]

Or,

[tex]\sf \implies \: x = 4[/tex]

_______________________________

I hope this helps!

Please let me know if you have any questions.

~MisterBrian