Respuesta :

Answer:

[tex]x=\frac{\ln(5)+1}{\ln(2)-1}\approx-8.5039[/tex]

Step-by-step explanation:

So we have the equation:

[tex]2^x=5e^{x+1}[/tex]

Let's take the natural log of both sides:

[tex]\ln(2^x)=\ln(5e^{x+1})[/tex]

On the left, we can move the x to the front:

[tex]x\ln(2)=\ln(5e^{x+1})[/tex]

On the right, we can separate the logs:

[tex]x\ln(2)=\ln(5)+\ln(e^{x+1})[/tex]

For the second term on the right, move all the exponent stuff to the front:

[tex]x\ln(2)=\ln(5)+(x+1)\ln(e)[/tex]

The natural log of e is 1. So:

[tex]x\ln(2)=\ln(5)+(x+1)(1)[/tex]

Simplify:

[tex]x\ln(2)=\ln(5)+x+1[/tex]

Subtract x from both sides:

[tex]x\ln(2)-x=\ln(5)+1[/tex]

Factor out an x from the left:

[tex]x(\ln(2)-1)=\ln(5)+1[/tex]

Divide both sides by the equation in the factor:

[tex]x=\frac{\ln(5)+1}{\ln(2)-1}[/tex]

So, our answer is:

[tex]x=\frac{\ln(5)+1}{\ln(2)-1}\approx-8.5039[/tex]

And we're done!