Respuesta :

Answer:

[tex]y=8[/tex]

[tex]RS=77, ST=31[/tex]

Step-by-step explanation:

Note that the entire segment RT is the combined lengths of RS and ST. So:

[tex]RT=RS+ST[/tex]

We know that RT is 108, RS is (9y+5), and ST is (3y+7). Substitute:

[tex]108=(9y+5)+(3y+7)[/tex]

On the right, combine like terms:

[tex]108=(9y+3y)+(5+7)[/tex]

Add:

[tex]108=12y+12[/tex]

Subtract 12 from both sides. The right cancels:

[tex]96=12y[/tex]

Divide both sides by 12:

[tex]y=8[/tex]

So, the value of y is 8.

To find RS and ST, substitute 8 for y. So:

[tex]RS=9y+5[/tex]

Substitute 8 for y:

[tex]RS=9(8)+5[/tex]

Multiply:

[tex]RS=72+5[/tex]

Add:

[tex]RS=77[/tex]

Do the same for ST:

[tex]ST=3y+7[/tex]

Substitute 8 for y:

[tex]ST=3(8)+7[/tex]

Multiply:

[tex]ST=24+7[/tex]

Add:

[tex]ST=31[/tex]

Your answers are
Y=8
RS= 77
ST= 31