Respuesta :
Answer:
The value is [tex]v = 2.083 *10^{5} \ m/s[/tex]
Explanation:
From the question we are told that
The radius of the cylinder is [tex]r = 2.0 \ cm = 0.02 \ m[/tex]
The charge density of the plasma is [tex]J = 6.0 * 10^{-5} C/m3[/tex]
Generally the difference in potential energy of the Tritium ion before entering the cylinder and at the axis of the cylinder is mathematically represented as
[tex]\Delta U= U_f - U_i = \frac{Q * J * r^2}{ 4 * \epsilon_o}[/tex]
Here
[tex] \epsilon_o}[/tex] is the permitivity of free space with value
[tex] \epsilon_o} =8.85*10^{-12} \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]
So
[tex]\Delta U = \frac{1.60 *10^{-19} * 6.0 * 10^{-5} * 0.02^2}{ 4 * 8.85*10^{-12}}[/tex]
[tex]\Delta U = 1.085 *10^{-16} \ J [/tex]
Generally from energy conservation we have that
[tex]KE_i + U_i = KE_f + U_f[/tex]
Given that the velocity at the axis of the cylinder should be zero then
it means that the kinetic energy at this axis will also be zero
So
[tex]KE_i + U_i = 0 + U_f[/tex]
Here KE_i is the initial kinetic energy of the Tritium ion which is mathematically represented as
[tex]KE_i = \frac{1}{2} * m * v^2[/tex]
So
=> [tex] \frac{1}{2} * m * v^2 = U_f - U_i[/tex]
=> [tex] \frac{1}{2} * m * v^2 = \Delta U[/tex]
=> [tex] \frac{1}{2} * m * v^2 = 1.085 *10^{-16}[/tex]
=> [tex]v =\sqrt{\frac{ 1.085 *10^{-16}}{0.5 * m} }[/tex]
Here m is the mass of Tritium ion which is given in the question
=> [tex]v =\sqrt{\frac{ 1.085 *10^{-16}}{0.5 * 5.0 x 10^{-27} } }[/tex]
=> [tex]v = 2.083 *10^{5} \ m/s[/tex]