Respuesta :
Answer: a) y = 2(x + 3)² - 7
b) y = -2(x + 4)² + 6
c) y = 3(x - 7)² + 4
Step-by-step explanation:
The vertex form of a quadratic equation is: y = a(x - h)² + k where
- "a" is the vertical stretch
- (h, k) is the vertex
- (x, y) is any point on the curve
Input (h, k) and (x, y) to solve for "a"
a) (h, k) = (-3, 7) and (x, y) = (-2, -5)
-5 = a(-2 + 3)² - 7
2 = a(1)²
2 = a
y = 2(x + 3)² - 7
b) (h, k) = (1, 3) and (x, y) = (2, 5)
5 = a(2 - 1)² + 3
2 = a(1)²
2 = a
y = 2(x - 1)² + 3
c) (h, k) = (-4, 6) and (x, y) = (-2, -2)
-2 = a(-2 + 4)² + 6
-8 = a(2)²
-8 = 4a
-2 = a
y = -2(x + 4)² + 6
d) (h, k) = (7, 4) and (x, y) = (5, 16)
16 = a(5 - 7)² + 4
12 = a(-2)²
12 = 4a
3 = a
y = 3(x - 7)² + 4
a) The equation of the parabola is [tex]y+3 = -12\cdot (x-7)^{2}[/tex].
b) The equation of the parabola is [tex]y-3 = 2\cdot (x-1)^{2}[/tex].
c) The equation of the parabola is [tex]y-6 = -2\cdot (x+4)^{2}[/tex].
d) The equation of the parabola is [tex]y-4 = 3\cdot (x-7)^{2}[/tex].
The equation of the parabola in vertex form is described below:
[tex]y-k = C\cdot (x-h)^{2}[/tex] (1)
Where:
- [tex]x[/tex] - Independent variable.
- [tex]y[/tex] - Dependent variable.
- [tex]h,k[/tex] - Vertex coordinates.
- [tex]C[/tex] - Vertex constant.
The vertex constant is found by (1):
[tex]C = \frac{y-k}{(x-h)^{2}}[/tex]
Now we proceed to determine each equation of the parabola:
a) (h, k) = (-3, 7), (x, y) = (-2, -5)
[tex]C = \frac{-5-7}{(-2+3)^{2}}[/tex]
[tex]C = -12[/tex]
The equation of the parabola is [tex]y+3 = -12\cdot (x-7)^{2}[/tex].
b) (h, k) = (1, 3), (x, y) = (2, 5)
[tex]C = \frac{5-3}{(2-1)^{2}}[/tex]
[tex]C = 2[/tex]
The equation of the parabola is [tex]y-3 = 2\cdot (x-1)^{2}[/tex].
c) (h, k) = (-4, 6), (x, y) = (-2, -2)
[tex]C = \frac{(-2-6)}{(-4+2)^{2}}[/tex]
[tex]C = -2[/tex]
The equation of the parabola is [tex]y-6 = -2\cdot (x+4)^{2}[/tex].
d) (h, k) = (7, 4), (x, y) = (5, 16)
[tex]C = \frac{(16-4)}{(5-7)^{2}}[/tex]
[tex]C = 3[/tex]
The equation of the parabola is [tex]y-4 = 3\cdot (x-7)^{2}[/tex].
We kindly invite to check this question on parabolas: https://brainly.com/question/8495869