2.24 Carbon dioxide (CO2) gas in a piston-cylinder assembly undergoes three processes in series that begin and end at the same state (a cycle). Process 1-2: Expansion from state 1 where p1 = 10 bar, V1 = 1 m3, to state 2 where V2 = 4 m3. During the process, pressure and pV1.5 volume are related by = constant. Process 2-3: Constant volume heating to state 3 where p3 = 10 bar. Process 3-1: Constant pressure compression to state 1. Sketch the processes on p –V coordinates and evaluate the work for each process, in kJ. What is the net work for the cycle, in kJ?

Respuesta :

Answer:

Explanation:

Given that:

From process 1 → 2

[tex]P_1 = 10 bar \\ \\ V_1 = 1 m^3 \\ \\ V_2 = 4 m^3[/tex]

[tex]PV^{1.5} = \ constant[/tex]

[tex]\gamma = 1.5[/tex]

Process 2 → 3

The volume is constant i.e [tex]V_2 =V_3 = 4m^3[/tex]

[tex]P_3 = 10 \ bar[/tex]

Process 3 → 1

P = constant  i.e the compression from state 1

Now, to start with 1 → 2

[tex]P_1V_1^{1.5} = P_2V_2^{1.5}[/tex]

[tex]P_2 = P_1 (\dfrac{V_1}{V_2})^{1.5}[/tex]

[tex]P_2 = 10 \times (\dfrac{1}{4})^{1.5}[/tex]

[tex]P_2 =1.25[/tex]

The work-done for the process  1 → 2 through adiabatic expansion is:

[tex]W = \dfrac{1}{1-\gamma}[P_2V_2-P_1V_1][/tex]

We know that 1 bar = [tex]10^5 \ N/m^2[/tex]

[tex]W = \dfrac{1}{1-1.5}[1.25 \times 10^5 \times 4- 10 \times 10^5 \times 1][/tex]

[tex]W =1000000 \ J[/tex]

[tex]W_{1 \to 2} = 1000 kJ[/tex]

For process 2 → 3

Since V is constant

Thus:

W = PΔV = 0

[tex]W_{2 \to 3} = 0[/tex]

For process 3 → 1

W = PΔV

[tex]W _{3 \to 1} = P_3(V_1-V_3)[/tex]

[tex]W _{3 \to 1} = 10 \times 10^5 (1-4)[/tex]

[tex]W _{3 \to 1} = 10 \times 10^5 (-3)[/tex]

[tex]W _{3 \to 1} = -3 \times 10^6 \ J[/tex]

[tex]W _{3 \to 1} = -3000 \ kJ[/tex]

The net work-done now  for the entire system is :

[tex]W_{net} = W_{1 \to 2} + W_{2 \to 3 } + W_{ 3 \to 1 }[/tex]

[tex]W_{net} = (1000 + 0 + (-3000)) \ kJ[/tex]

[tex]W_{net} =-2000 \ kJ[/tex]

The sketch of the processes on p -V coordinates can be found in the image attached below.

Ver imagen ajeigbeibraheem

A) The work done for each process are :

  1. Process (1 - 2) = 1000 kJ
  2. Process (2 - 3) = 0 kJ
  3. process (3 - 1) = -3000 kJ

B) The net work for the cycle = -2000 kJ

Given Data :

For process (1 -2)      For process ( 2 - 3 )       process ( 3 - 1 )

P₁ = 10 bar                   P₃ = 10 bar                  constant pressure compression

V₁ = 1 m³                  constant volume heating

V₂ = 4 m³

PV[tex]^{1.5}[/tex] = constant

A) Determine work done for each process

Calculate work done for process (1 - 2)

W₁ ₋ ₂ = [tex]\frac{P_{1}V_{1} - P_{2}V_{2} }{n -1 }[/tex] * 100

         = [ ( 10*1 ) - ( 1.25 * 4 ) ] / 1.5 - 1

         = [ 10 - 5 ] / 0.5

         = 10 * 100 = 1000 kJ

Calculate work done for process ( 2-3 )

given that there is constant volume heating

W₂₋₃ = 0 kJ

Calculate work done for process ( 3-1)

W₃₋₁ = P ( Δ V )     given that p = constant

       = 10 * 100 ( -3 )

       = - 3000 kJ

B) The net work for the cycle

W₁ ₋ ₂  +  W₂₋₃  + W₃₋₁

= 1000 kJ  + 0 kJ  +  - 3000 kJ

= - 2000 kJ

Hence we can conclude that the ) The work done for each process are :

  1. Process (1 - 2) = 1000 kJ
  2. Process (2 - 3) = 0 kJ
  3. process (3 - 1) = -3000 kJ

and The net work for the cycle = -2000 kJ

Learn more about piston-cylinder assembly : https://brainly.com/question/13739421

Attached below is the P-V sketch of the process

Ver imagen batolisis