A surveyor standing some distance from a mountain, measures the angle of elevation from the ground to the top of the mountain to be 47°57′52″47°57′52″. The surveyor then walks forward 13741374 feet and measures the angle of elevation to be 73°3′35″73°3′35″. What is the height of the mountain? Round your solution to the nearest whole foot.

Respuesta :

Answer:

The height of the mountain is 2305 feet.

Step-by-step explanation:

Given that:

We are provided with the angles are in degree, minutes and seconds, we are required to convert them back to degrees.

So, 47°57′52″ in degrees only will be :

=[tex]47^0 + 57 \times \dfrac{1}{60}+ 52 \times \dfrac{1}{3600}[/tex]

= [tex]47^0 +0.95^0+0.0144^0[/tex]

= 47.9644°

[tex]\simeq[/tex] 47.96°

For the second angle after he walked a distance if 1374 feet; we have:

73°3′35″

= [tex]73^0 + 3 \times \dfrac{1}{60} \times 35 \times \dfrac{1}{3600}[/tex]

= [tex]73^0 + 0.05 ^0 \times 0.0097^0[/tex]

= 73.000485°

[tex]\simeq[/tex] 73

From the image attached below;

x = 180° - 73° = 107°  ( angles on a striaght line)

107° + 47.96° + y = 180°   ( sum of angles in a triangle)

y = 180° - 107° - 47.96°

y = 25.04

Using sine rule:

[tex]\dfrac{a}{sin \ 47.96} = \dfrac{1374}{sin \ 25.04}[/tex]

a × sin 25.04 = 1374 × sin 47.96

[tex]a = \dfrac{ 1374 \times sin \ 47.96} { sin \ 25.04 }[/tex]

[tex]a = \dfrac{ 1020.439} {0.4233}[/tex]

a = 2410.68

From the figure, using trigonometry rule;

[tex]Sin 73 = \dfrac{h}{a}[/tex]

[tex]Sin \ 73 = \dfrac{h}{2410.68}[/tex]

h = sin 73 × 2410.68

h = 0.9563 × 2410.68

h = 2305.33 feet

To the nearest whole number , the height is 2305 feet.

Ver imagen ajeigbeibraheem