Use the formula Pt= P0e^rt. where Pt is the amount after t years, P0 is the initial amount, t is the rate of interest, and t is the time period, to complete the table.

Answer:
Step-by-step explanation:
From the given formula,
[tex]P(t)=P(0)e^{rt}[/tex]
[tex]\frac{P(t)}{P(0)}=e^{rt}[/tex]
[tex]\text{ln}[\frac{P(t)}{P(0)}]=\text{ln}[e^{rt}][/tex]
[tex]\text{ln}[\frac{P(t)}{P(0)}]=rt[/tex]
Now we put the values in the formula to get the values of the blank spaces in the table,
1). [tex]\text{ln}[\frac{984}{800}]=5r[/tex]
r = [tex]\frac{0.207}{5}[/tex]
r ≈ 4.2%
2). [tex]\text{ln}[\frac{1464}{1200}]=4r[/tex]
r = [tex]\frac{0.19885}{4}[/tex]
r = 0.0497
r = 5%
3). [tex]\text{ln}[\frac{1111.5}{950}]=0.045t[/tex]
t = [tex]\frac{0.157}{0.045}[/tex]
t = 3.5 years
4). [tex]\text{ln}[\frac{775}{620}]=3.7t[/tex]
t = [tex]\frac{0.22314}{0.037}[/tex]
t ≈ 6 years
5). [tex]\text{ln}[\frac{1066.8}{840}]=8r[/tex]
r = [tex]\frac{0.239}{8}[/tex]
r ≈ 3%
Answer:
WHAT EVER THE OTHER DUDE PUT IS CORRECT
Step-by-step explanation: