The intensity of the sunlight that reaches Earth’s upper atmosphere is approximately 1400 W/m2. (a) What is the average energy density? (b) Find the rms values of the electric and magnetic fields. Some useful formulas: I = <> c, <>= 0 Erms2 = Brms2 /0, 0=8.854 x 10-12 C2/(N. m2) , 0= 4  x 10-7 T. m/A, c= 3 x 108 m/s.

Respuesta :

Answer:

(a) Average energy density is 4.67 × 10⁻⁶  J/m³

(b) The rms value of the electric field is 726.26 V/m

and the rms value of the magnetic field 2.42 × 10⁻⁶ T

Explanation:

The average energy density < u > is given by

< u > = I / c

Where I is the intensity and

c is the speed of light

From the question

I = 1400 W/m²

c = 3 × 10⁸ m/s

∴ < u > = 1400 W/m² /  3 × 10⁸ m/s

< u > = 4.67 × 10⁻⁶  Ws/m³ (NOTE: Ws = J)

< u > = 4.67 × 10⁻⁶  J/m³

This is the average energy density

(b) From the formula

[tex]< u > = \epsilon _{o} E_{rms} ^{2}[/tex]

[tex]E_{rms} = \sqrt{\frac{< u >}{\epsilon_{o} } }[/tex]

From the question, [tex]\epsilon _{o}[/tex] = 8.854 × 10⁻¹² C²/N.m²

∴ [tex]E_{rms} = \sqrt{\frac{4.67 \times 10^{-6} }{ 8.854 \times 10^{-12} }[/tex]

[tex]E_{rms} = 726.25 V/m[/tex]

This is the rms value of the electric field

For the rms value of the magnetic field

From

[tex]\epsilon_{o} E_{rms}^{2} = \frac{B_{rms}^{2}}{\mu _{o} }[/tex]

Then,

[tex]{B_{rms} = \sqrt{\mu _{o} \epsilon_{o} E_{rms}^{2}}[/tex]

From the question, [tex]\mu_{o}[/tex] = 4π × 10⁻⁷ T.m/A

[tex]{B_{rms} = \sqrt{4\pi \times 10^{-7} \times 8.854 \times 10^{-12} \times (726.35)^{2} }[/tex]

[tex]{B_{rms} = 2.42 \times 10^{-6} T[/tex]

This is the rms value of the magnetic field