Respuesta :

Answer:

[tex]X=\frac{Z}{2}[/tex]

It is the first statement about the relationship between points X, Y, and Z.

[tex]X=\frac{3a+2b}{Y}[/tex]

It is the second statement about the relationship between points X, Y, and Z.

Step-by-step explanation:

Given,

[tex]XY=3a+2b\quad \quad ...(i)\\ZY=6a+4b\quad \quad ...(ii)[/tex]

Now from the equation [tex](ii)[/tex],

[tex]Y=\frac{6a+4b}{Z}[/tex]

put this in the equation [tex](i),[/tex]

[tex]X\left(\frac{6a+4b}{Z}\right)=3a+2b[/tex]

[tex]\Rightarrow X=\frac{Z}{6a+4b}(3a+2b)[/tex]

[tex]\Rightarrow X=\frac{Z}{2(3a+2b)}(3a+2b)[/tex]

[tex]\Rightarrow X=\frac{Z}{2}[/tex]

It is the first statement about the relationship between points X, Y, and Z.

[tex]\because XY=3a+4b[/tex]

[tex]\Rightarrow X=\frac{3a+2b}{Y}[/tex]

It is the second statement about the relationship between points X, Y, and Z.