Answer:
The shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm
Explanation:
Given;
wavelength of ultraviolet light, λ = 270 nm
work function of the metal, φ = 2.3 eV = 2.3 x 1.602 x 10⁻¹⁹ J = 3.685 x 10⁻¹⁹ J
The energy of the ultraviolet light is given by;
[tex]E = \frac{hc}{\lambda}\\\\E = \frac{(6.626*10^{-34} )(3*10^{8}) }{270*10^{-9} }\\\\E = 7.362 * 10^{-19} \ J[/tex]
The energy of the incident light is related to kinetic energy of the electron and work function of the metal by the following equation;
E = φ + K.E
K.E = E - φ
K.E = (7.362 x 10⁻¹⁹ J) - (3.685 x 10⁻¹⁹ J )
K.E = 3.677 x 10⁻¹⁹ J
K.E = ¹/₂mv²
mv² = 2K.E
velocity of the electron is given by;
[tex]V = \sqrt{\frac{2K.E}{m} }\\\\V = \sqrt{\frac{2(3.677*10^{-19}) }{9.1*10^{-31} } }\\\\V = 8.99*10^{5} \ m/s[/tex]
the shortest de Broglie wavelength for the electrons is given by;
[tex]\lambda = \frac{h}{mv}\\ \\\lambda = \frac{6.626*10^{-34} }{(9.1*10^{-31})( 8.99*10^{5} )}\\\\\lambda = 8.10*10^{-10} \ m\\\\\lambda = 0.81 \ nm[/tex]
Therefore, the shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm