Respuesta :
volume of cylinder([tex]A_1[/tex]) [tex] =\frac{1}{3}h \pi r^2[/tex]
volume of cone([tex]A_2 [/tex]) [tex] =h \pi r^2[/tex]
plugging stuff in we get
[tex]A_1= \frac{1}{3}*16*5^2= \frac{400}{3} [/tex]
[tex]A_2= 12*4^2= 192 [/tex]
Which the empty space[tex]=A_2-A_1=192- \frac{400}{3} = \frac{176}{3} [/tex]
volume of cone([tex]A_2 [/tex]) [tex] =h \pi r^2[/tex]
plugging stuff in we get
[tex]A_1= \frac{1}{3}*16*5^2= \frac{400}{3} [/tex]
[tex]A_2= 12*4^2= 192 [/tex]
Which the empty space[tex]=A_2-A_1=192- \frac{400}{3} = \frac{176}{3} [/tex]
Cylinder:
r = 5 cm, h = 16 cm
V = r² π h
V = 5² π · 16 = 25 · 3.14 · 16 = 1,256 cm³
----------------------------------------------------
Cone:
r = 4 cm, h = 12 cm
V = 1/3 r² π h
V = 1/3 · 4² π · 12 = 200.96 cm³
The volume of the air space :
1,256 - 200.96 = 1,055.04 cm³
r = 5 cm, h = 16 cm
V = r² π h
V = 5² π · 16 = 25 · 3.14 · 16 = 1,256 cm³
----------------------------------------------------
Cone:
r = 4 cm, h = 12 cm
V = 1/3 r² π h
V = 1/3 · 4² π · 12 = 200.96 cm³
The volume of the air space :
1,256 - 200.96 = 1,055.04 cm³