Respuesta :

s = r π α / 180°
r = 3 ft,  α = 57°
s = 3 · π · 57° / 180° = 19/20 π ft = 0.95 π ft ≈ 2.983 ft
Answer: the arc length is 2.983 ft.

Answer:

The length of the arc is 2.98 feet.

Step-by-step explanation:

Given : For a circle of radius 3 feet, the arc length s subtended by a central angle of 57 degrees.

To find : The arc length

Solution :

Formula of arc length is [tex]L=r\times \theta[/tex]

Where L is the arc length, r is the radius and [tex]\theta[/tex] is the angle (in radians)

The radius given is r=3 feet.

The angle subtended is [tex]\theta=57^\circ[/tex]

Convert degree into radians

[tex]1^\circ= \frac{\pi }{180}[/tex]  radians

[tex]57^\circ= 57\times\frac{\pi }{180}[/tex] radians

Substitute in the formula,

[tex]L=r\times \theta[/tex]

[tex]L=3\times 57\times\frac{\pi}{180} [/tex]

[tex]L=57\times\frac{\pi}{60}[/tex]

[tex]L=0.95\pi [/tex]

[tex]L=0.95\times 3.14=2.98 [/tex]

Therefore, The length of the arc is 2.98 feet.