Answer:
[tex]y = 3x + 2[/tex]
Step-by-step explanation:
Given
[tex]y = \frac{x - 2}{3}[/tex]
Required
Determine its inverse
[tex]y = \frac{x - 2}{3}[/tex]
Swap the positions of x and y
[tex]x = \frac{y - 2}{3}[/tex]
Solve for y: Multiply both sides by 3
[tex]3x = y - 2[/tex]
Add 2 to both sides
[tex]3x + 2 = y[/tex]
[tex]y = 3x + 2[/tex]
Hence;
The inverse function is:
[tex]y = 3x + 2[/tex]