Respuesta :

Answer:

[tex](8,-4)[/tex]

Step-by-step explanation:

Given

[tex]A = (3,4)[/tex]

[tex]M = (5.5,0)[/tex]---- Midpoint

Required

[tex]Find\ B[/tex]

This will be solved using Midpoint formula:

[tex](x,y) = (\frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2})[/tex]

Where

[tex](x,y) = M(5.5,0)[/tex]

[tex](x_1, y_1) = A(3,4)[/tex]

Substitute these values, then we have:

[tex](5.5,0) = (\frac{3 + x_2}{2},\frac{4 + y_2}{2})[/tex]

Compare the right hand side with the left, we have

[tex]5.5 = \frac{3 + x_2}{2}[/tex] --- (1)

[tex]0 = \frac{4 + y_2}{2}[/tex] --- (2)

Solving (1)

[tex]5.5 = \frac{3 + x_2}{2}[/tex]

Multiply both sides by 2

[tex]11 = 3+x_2[/tex]

Subtract 3 from both sides

[tex]x_2 = 11 - 3[/tex]

[tex]x_2 = 8[/tex]

Solving (2)

[tex]0 = \frac{4 + y_2}{2}[/tex]

Multiply both sides by 2

[tex]0 = 4 + y_2[/tex]

Subtract 4 from both sides

[tex]y_2 = 0 - 4[/tex]

[tex]y_2 = - 4[/tex]

Hence:

[tex]B(x_2,y_2) = (8,-4)[/tex]

(8,-4)

plz give me brainliest i need as many as i can get