Respuesta :

Answer:

x can have any value, there are infinite solutions.

Step-by-step explanation:

[tex]3\left(2x-4\right)=6\left(x-2\right)[/tex]

Expand:

[tex]3\times2x-3\times 4=6x-6\times 2[/tex]

[tex]6x-12=6x-12[/tex]

Add 12 to both sides:

[tex]6x-12+12=6x-12+12[/tex]

[tex]6x=6x[/tex]

Subtract 6x from both sides:

[tex]6x-6x=6x-6x[/tex]

[tex]0=0[/tex]

There are infinite solutions for x, as no matter what the value of x is, it will not affect the end result of [tex]0=0[/tex] which is true.

Using distributive properties :

3(2x-4) = 6(x-2)

6x-12 = 6x -12

Because they are equal x can be any real number:

(-infinity , infinity)

Otras preguntas