Answer:
[tex]E\ n\ F = \{1, 5, 6,7\}[/tex]
[tex]F\ n\ G =\{9\}[/tex]
[tex]F\ U\ G =\{1,5,6, 7, 8,9,10, 11, 12\}[/tex]
[tex]P(F\ U\ G) = \frac{3}{4}[/tex]
Step-by-step explanation:
Given
[tex]S = \{1,2,3,4, 5,6,7,8, 9, 10, 11, 12\}[/tex]
[tex]E = \{1,2, 3, 4, 5, 6,7\}[/tex]
[tex]F =\{1,5,6, 7, 8,9\}[/tex]
[tex]G = \{9,10, 11, 12\}[/tex]
[tex]H = \{2, 3, 4\}[/tex]
Solving (5): E and F
Sets of E and F = E n F
[tex]E\ n\ F = \{1,2, 3, 4, 5, 6,7\}\ n\ \{1,5,6, 7, 8,9\}[/tex]
List out common elements
[tex]E\ n\ F = \{1, 5, 6,7\}[/tex]
They are not mutually exclusive because [tex]n(E\ n\ F) \neq 0[/tex]
Solving (6): F and G
Sets of F and G = F n G
[tex]F\ n\ G =\{1,5,6, 7, 8,9\}\ n\ \{9,10, 11, 12\}[/tex]
List out common elements
[tex]F\ n\ G =\{9\}[/tex]
They are not mutually exclusive because [tex]n(F\ n\ G) \neq 0[/tex]
Solving (7): F or G and P(F or G)
Sets of F or G = F U G
[tex]F\ U\ G =\{1,5,6, 7, 8,9\}\ U\ \{9,10, 11, 12\}[/tex]
List all elements without repetition
[tex]F\ U\ G =\{1,5,6, 7, 8,9,10, 11, 12\}[/tex]
Solving P(F U G)
[tex]P(F\ U\ G) = \frac{n(F\ U\ G)}{n(S)}[/tex]
[tex]n(F\ U\ G) = 9[/tex]
[tex]n(S) = 12[/tex]
Hence;
[tex]P(F\ U\ G) = \frac{9}{12}[/tex]
Divide by 3
[tex]P(F\ U\ G) = \frac{3}{4}[/tex]