Will mark Brainliest!!!!! Suppose A, R, and B are collinear on AB, and
AR: AB = 1/4 What are the coordinates of R?

Please give explanation

Will mark Brainliest Suppose A R and B are collinear on AB and AR AB 14 What are the coordinates of R Please give explanation class=

Respuesta :

Answer:

[tex]R(x,y) = (\frac{7}{4},\frac{1}{4})[/tex]

Step-by-step explanation:

Given

[tex]A = (1,-1)[/tex]

[tex]B = (4,4)[/tex]

[tex]AR:AB = 1:4[/tex]

Required

Determine R

This question will be solved using line ratio formula

[tex]R(x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2+ny_1}{m + n})[/tex]

Where

[tex]A = (1,-1)[/tex]

[tex]B = (4,4)[/tex]

[tex]m:n = AR : RB[/tex]

Since R is on A and B;

[tex]AB = AR + RB[/tex]

[tex]4 = 1 + RB[/tex]

[tex]RB = 3[/tex]

Hence;

[tex]m:n = 1 : 3[/tex]

[tex]A = (1,-1)[/tex]

[tex]B = (4,4)[/tex]

[tex]R(x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2+ny_1}{m + n})[/tex] becomes

[tex]R(x,y) = (\frac{1 * 4 + 3 * 1}{1+3},\frac{1 * 4 + 3 * -1}{1 + 3})[/tex]

[tex]R(x,y) = (\frac{4 + 3}{4},\frac{4 - 3}{4})[/tex]

[tex]R(x,y) = (\frac{7}{4},\frac{1}{4})[/tex]