Answer:
[tex]R(x,y) = (\frac{7}{4},\frac{1}{4})[/tex]
Step-by-step explanation:
Given
[tex]A = (1,-1)[/tex]
[tex]B = (4,4)[/tex]
[tex]AR:AB = 1:4[/tex]
Required
Determine R
This question will be solved using line ratio formula
[tex]R(x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2+ny_1}{m + n})[/tex]
Where
[tex]A = (1,-1)[/tex]
[tex]B = (4,4)[/tex]
[tex]m:n = AR : RB[/tex]
Since R is on A and B;
[tex]AB = AR + RB[/tex]
[tex]4 = 1 + RB[/tex]
[tex]RB = 3[/tex]
Hence;
[tex]m:n = 1 : 3[/tex]
[tex]A = (1,-1)[/tex]
[tex]B = (4,4)[/tex]
[tex]R(x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2+ny_1}{m + n})[/tex] becomes
[tex]R(x,y) = (\frac{1 * 4 + 3 * 1}{1+3},\frac{1 * 4 + 3 * -1}{1 + 3})[/tex]
[tex]R(x,y) = (\frac{4 + 3}{4},\frac{4 - 3}{4})[/tex]
[tex]R(x,y) = (\frac{7}{4},\frac{1}{4})[/tex]