Respuesta :

Answer:

(1.6, 0)

Step-by-step explanation:

Point P, partitioning AB in the ratio 1:4, implies that it divides AB into, AP and PB, such that AP to PB = 1:4.

Use the formuka below to find the coordinates of point P:

[tex] x = \frac{mx_2 + nx_1}{m + n} [/tex]

[tex] y = \frac{my_2 + ny_1}{m + n} [/tex]

Where,

[tex] A(1, -1) = (x_1, y_1) [/tex]

[tex] B(4, 4) = (x_2, y_2) [/tex]

[tex] m = 1, n = 4 [/tex]

Solve by plugging the above values where necessary as follows:

[tex] x = \frac{mx_2 + nx_1}{m + n} [/tex]

[tex] x = \frac{1(4) + 4(1)}{1 + 4} [/tex]

[tex] x = \frac{4 + 4}{5} [/tex]

[tex] x = \frac{8}{5} [/tex]

[tex] x = 1.6 [/tex]

[tex] y = \frac{my_2 + ny_1}{m + n} [/tex]

[tex] y = \frac{1(4) + 4(-1)}{1 + 4} [/tex]

[tex] y = \frac{4 - 4}{5} [/tex]

[tex] y = \frac{0}{5} [/tex]

[tex] y = 0 [/tex]

The coordinates of P that partitions AB into the ratio 1:4 are (1.6, 0)