Answer:
6xsinx + 3x²cosx
Step-by-step explanation:
Differentiate using the product rule
Given y = f(x)(g(x) , then
[tex]\frac{dy}{dx}[/tex] = f(x)g'(x) + g(x)f'(x)
Here f(x) = sinx ⇒ f'(x) = cosx
g(x) = 3x² ⇒ g'(x) = 6x
Thus
[tex]\frac{dy}{dx}[/tex] = 6xsinx + 3x²cosx