A basketball leaves a player's hands at a height of 2.20 m above the floor. The basket is 2.70 m above the floor. The player likes to shoot the ball at a 36.0 ∘ angle. Of the shot is made from a horizontal distance of 9.10 m and must be accurate to ±0.23m (horizontally), what is the range of initial speeds allowed to make the basket

Respuesta :

Answer:

The range of initial speeds allowed to make the basket is: [tex]9.954\,\frac{m}{s}\leq v \leq 10.185\,\frac{m}{s}[/tex].

Explanation:

We must notice that basketball depicts a parabolic motion, which consists of combining a constant speed motion in x-direction and free fall motion in the y-direction. The motion is described by the following kinematic formulas:

x-Direction

[tex]x = x_{o} + v_{o}\cdot t \cdot \cos \alpha[/tex]

y-Direction

[tex]y = y_{o} + v_{o}\cdot t\cdot \sin \alpha +\frac{1}{2}\cdot g\cdot t^{2}[/tex]

Where:

[tex]x_{o}[/tex], [tex]y_{o}[/tex] - Initial position of the basketball, measured in meters.

[tex]x[/tex], [tex]y[/tex] - Final position of the basketball, measured in meters.

[tex]v_{o}[/tex] - Initial speed of the basketball, measured in meters per second.

[tex]t[/tex] - Time, measured in seconds.

[tex]\alpha[/tex] - Tilt angle, measured in sexagesimal degrees.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

If we know that [tex]x_{o} = 0\,m[/tex], [tex]y_{o} = 2.20\,m[/tex], [tex]\alpha = 36^{\circ}[/tex], [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], [tex]x = (9.10\pm0.23)\,m[/tex] and [tex]y = 2.70\,m[/tex], the system of equation is reduce to this:

[tex](9.10\pm 0.23)\,m = 0\,m + v_{o}\cdot t \cdot \cos 36^{\circ}[/tex]

[tex]9.10\pm 0.23 = 0.809\cdot v_{o}\cdot t[/tex] (Ec. 1)

[tex]2.70\,m = 2.20\,m + v_{o}\cdot t \cdot \sin 36^{\circ} + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right) \cdot t^{2}[/tex]

[tex]0.50 = 0.588\cdot v_{o}\cdot t-4.904\cdot t^{2}[/tex] (Ec. 2)

At first we clear [tex]v_{o}\cdot t[/tex] in (Ec. 1):

[tex]v_{o}\cdot t = \frac{9.10\pm 0.23}{0.809}[/tex]

[tex]v_{o}\cdot t = 11.248\pm 0.284[/tex]

(Ec. 1) in (Ec. 2):

[tex]0.5 = 0.588\cdot (11.248\pm 0.284)-4.904\cdot t^{2}[/tex]

Now we clear the time in the resulting expression:

[tex]4.904\cdot t^{2} = 0.588\cdot (11.248\pm 0.284)-0.5[/tex]

[tex]t = \sqrt{\frac{0.588\cdot (11.248\pm 0.284)-0.5}{4.904} }[/tex]

There are two solutions:

[tex]t_{1} = \sqrt{\frac{0.588\cdot (11.248- 0.284)-0.5}{4.904} }[/tex]

[tex]t_{1} \approx 1.101\,s[/tex]

[tex]t_{2} = \sqrt{\frac{0.588\cdot (11.248+ 0.284)-0.5}{4.904} }[/tex]

[tex]t_{2}\approx 1.131\,s[/tex]

The initial velocity is cleared within (Ec. 2):

[tex]v_{o}=\frac{0.50+4.904\cdot t^{2}}{0.588\cdot t}[/tex]

The bounds of the range of initial speed is determined hereafter:

[tex]t_{1} \approx 1.101\,s[/tex]

[tex]v_{o} = \frac{0.50+4.904\cdot (1.101)^{2}}{0.588\cdot (1.101)}[/tex]

[tex]v_{o} = 9.954\,\frac{m}{s}[/tex]

[tex]t_{2}\approx 1.131\,s[/tex]

[tex]v_{o} = \frac{0.50+4.904\cdot (1.131)^{2}}{0.588\cdot (1.131)}[/tex]

[tex]v_{o} = 10.185\,\frac{m}{s}[/tex]

The range of initial speeds allowed to make the basket is: [tex]9.954\,\frac{m}{s}\leq v \leq 10.185\,\frac{m}{s}[/tex].