Respuesta :

Step-by-step explanation:

Hey there!!!

Here,

The midpoint of AB is M(-3,-3) and coordinates of A is (-8,-2).

Now,

Using midpoint formulae,

[tex](x,y) =( \frac{x1 + x2}{2} ,\frac{y1 + y2}{2} )[/tex]

Put all values.

[tex]( - 3,- 3) = ( \frac{ - 8 + x}{2} , \frac{ - 2 + y}{2} )[/tex]

As they are equal, equating with their corresponding elements we get,

[tex] - 3 = \frac{ - 8 + x}{2} [/tex]

Simplify them.

[tex] - 6 = - 8 + x[/tex]

[tex]x = - 6 + 8[/tex]

Therefore, x= 2

Now,

[tex] - 3 = \frac{ - 2 + y}{2} [/tex]

Simplify them.

[tex] - 6 = - 2 + y[/tex]

[tex]y = - 6 + 2[/tex]

Therefore, y = -4.

Therefore, the coordinates of B are (2,-4).

Hope it helps...