The percent change in multifactor productivity if Fok can reduce the energy bill by ​$1,000 per day without cutting production or changing any other inputs​

The percent change in multifactor productivity if Fok can reduce the energy bill by 1000 per day without cutting production or changing any other inputs class=

Respuesta :

Answer:

The answer is "2.45%".

Explanation:

The answer of option c:

Reduce power by 950 dollars:

In this question it will need to once again take the latest energy cost for analytical hierarchical productivity.  

→ Total Input  [tex]= 400 \times 12+21000 \times 1 +(5000-950)+10000[/tex]

                     [tex]= 4800 +21000 + (4050)+10000 \\\\ = 25800+4050+10000 \\\\ = 39850\\[/tex]

Consumer rates  [tex]= \frac{1,000}{39,850}[/tex]

                            [tex]=0.0250[/tex]

Initial efficiency multi-factor= 0.0245

[tex]\to \text{percentage changes} = \frac{\text{New Multi Factor Productivity - Previous Multi-Factor Productivity}}{\text{Originbal Multi-Factor Productivity}}[/tex]  

                                   [tex]= \frac{(0.02450.0251)}{0.0245}\\\\ = 2.45 \ \ \%[/tex]

9.20% is the percent change in multifactor productivity if Fok can reduce the electricity bill by ​$1,000 per day without cut down production or changing any other inputs​.

Computation of percentage change:

According to the question,

Reduce power by $950,

For analytical hierarchical productivity, we need to calculate the latest energy.

Total New Input(TNI):

Summation of all the inputs:

[tex]\text{TNI}= 400\times12+\$21,000\times1+(\$5,000-950)+\$10,000\\\\\text{TNI}=\$4,800+\$21,000+\$4,050+\$10.000.\\\\\text{TNI}=\$25,800+\$4,050+\$10,000.\\\\\text{TNI}=\$39,850.[/tex]

[tex]\text{Consumer Rates}=\dfrac{\text{Energy bill per day}}{\text{TNI} }.\\\\\text{Consumer Rates}=\dfrac{1,000}{39,850}.\\\\\text{Consumer Rates}=0.0250.[/tex]

Initial efficiency factor: 0.0245 (as per question)

[tex]\text{Percentage changes}=\dfrac{\text{New multifactor productivity-Previous multifactor productivity}}{\text{Original multifactor productivity}}\\\\\text{Percentage changes}=\dfrac{0.2450-0.0194}{2.45}.\\\\\text{Percentage changes}=9.20\%.[/tex]

Hence, 9.20% is the percent change.

Learn more about multifactor, refer:

https://brainly.com/question/14437331?referrer=searchResults