Rural and urban students are equally
likely to get admission in a college. If 100
students get admission, then the probability
that more rural students get admission than
urban students is

Respuesta :

Answer:

The answer is below

Step-by-step explanation:

Using binomial probability:

p = probability of a rural student getting admission = 1/2

q = probability of a rural student not getting admission = 1/2

n = number of students = 100

P(x) = [tex]C(n,x) p^xq^{(n-x)[/tex]

But [tex]p^xq^{n-x}=\frac{1}{2}^x\frac{1}{2}^{n-x}=\frac{1}{2}^{n}[/tex]

P(x > 50) = P(x = 51) + P(x = 52) + P(x = 53) + . . . + P(x = 100)

P(x > 50) = [tex]\frac{1}{2} ^{100}[C(100,51)+C(100,52)+C(100,53)+\ .\ .\ .+C(100,100)]\\[/tex]

[tex]P(x>50)=\frac{1}{2}^{100} (\frac{1}{2}( 2^{100}-C(100,50)))\\\\P(x>50)=(\frac{1}{2}^{100} *\frac{1}{2}*2^{100})- (\frac{1}{2}^{100} *\frac{1}{2}*C(100,50))\\\\P(x>50)=\frac{1}{2}[(2^{-100}*2^{100})-(\frac{1}{2}^{100} *C(100,50))]\\ \\P(x>50)=\frac{1}{2}[1-\frac{1}{2}^{100} *C(100,50)][/tex]