Answer:
The answer is below
Step-by-step explanation:
Using binomial probability:
p = probability of a rural student getting admission = 1/2
q = probability of a rural student not getting admission = 1/2
n = number of students = 100
P(x) = [tex]C(n,x) p^xq^{(n-x)[/tex]
But [tex]p^xq^{n-x}=\frac{1}{2}^x\frac{1}{2}^{n-x}=\frac{1}{2}^{n}[/tex]
P(x > 50) = P(x = 51) + P(x = 52) + P(x = 53) + . . . + P(x = 100)
P(x > 50) = [tex]\frac{1}{2} ^{100}[C(100,51)+C(100,52)+C(100,53)+\ .\ .\ .+C(100,100)]\\[/tex]
[tex]P(x>50)=\frac{1}{2}^{100} (\frac{1}{2}( 2^{100}-C(100,50)))\\\\P(x>50)=(\frac{1}{2}^{100} *\frac{1}{2}*2^{100})- (\frac{1}{2}^{100} *\frac{1}{2}*C(100,50))\\\\P(x>50)=\frac{1}{2}[(2^{-100}*2^{100})-(\frac{1}{2}^{100} *C(100,50))]\\ \\P(x>50)=\frac{1}{2}[1-\frac{1}{2}^{100} *C(100,50)][/tex]