What are the solutions of the equation x4 – 5x2 – 36 = 0? Use factoring to solve. x = ±2 and x = ±3 x = ±2i and x = ±3 x = ±2 and x = ±3i x = ±2i and x = ±3i

Respuesta :

Answer:

[tex]x=\pm 3\text{ or } x=\pm 2i[/tex]

Step-by-step explanation:

So we have the equation:

[tex]x^4-5x^2-36=0[/tex]

Let's let u equal x² so:

[tex]u^2-5u-36=0[/tex]

Factor. We can use -9 and 4. So:

[tex]u^2+4u-9u-36=0[/tex]

From the first two terms, factor out a u.

From the last two terms, factor out a -9. So:

[tex]u(u+4)-9(u+4)=0[/tex]

Grouping:

[tex](u-9)(u+4)=0[/tex]

Zero Product Property:

[tex]u-9=0 \text{ or } u+4=0[/tex]

On the left, add 9. On the right, subtract 4:

[tex]u=9\text{ or } u=-4[/tex]

Substitute back u:

[tex]x^2=9\text{ or } x^2=-4[/tex]

Take the square root:

[tex]x=\pm 3\text{ or } x=\pm 2i[/tex]

And we're done!

Our answer is the Second option.

Answer:

B). x = ±2i and x = ±3

Step-by-step explanation: