Respuesta :

Answer:

[tex](g\cdot f)(0)=4[/tex]

Step-by-step explanation:

So we have the two functions:

[tex]f(x)=5x-4\text{ and } g(x)=x^2-1[/tex]

And we want to find:

[tex](g\cdot f)(0)[/tex]

This is the same as:

[tex]=g(0)\cdot f(0)[/tex]

So, find g(0) and f(0):

g(0):

Substitute 0 into g(x):

[tex]g(0)=(0)^2-1[/tex]

Square:

[tex]g(0)=0-1[/tex]

Subtract:

[tex]g(0)=-1[/tex]

And f(0):

Substitute 0 into f(x):

[tex]f(0)=5(0)-4[/tex]

Multiply:

[tex]f(0)=0-4[/tex]

Subtract:

[tex]f(0)=-4[/tex]

So, our equation is now:

[tex](g\cdot f)(0)=g(0)\cdot f(0)=(-1)\cdot(-4)[/tex]

Multiply:

[tex]=4[/tex]

So, our answer is 4.

And we're done!