Respuesta :

C is the answer
they have equivalent sides and equivalent measurements

       Triangles given in Options (b) and (c) are similar.

Theorems of similar triangles:

  •  If two angles of a pair of triangles are equal in measure, then the triangles will be similar by A-A property.
  •  If corresponding sides of two triangles are proportional, both the triangles will be similar.

From the picture attached,

a). In triangle ABC,

    ∠A + ∠B + ∠C = 180°    [By triangle sum theorem]

    60° + ∠B + 40° = 180°

    ∠B = 80°

    Similarly, in ΔDEF,

     ∠D + ∠E + ∠F = 180°

     60° + 85° + ∠F = 180°

     ∠F = 35°

       Since, measure of angles of both the triangles are different in measures, triangles will not be similar.

b). In ΔABC,

    ∠A + ∠B + ∠C = 180°

    45° + 50° + ∠B = 180°

     ∠B = 85°

     In ΔDEF,

     ∠D + ∠E + ∠F = 180°

      50° + 85° + ∠F = 180°

      ∠F = 45°

      Hence, ∠C ≅ ∠D, ∠A≅ ∠F and ∠B ≅ ∠E

       Since, measure of corresponding angles are equal, both the

       triangles (ΔABC ~ ΔFED) will be similar.

c).    Here, corresponding sides of both the triangles are proportional,

       [tex]\frac{AB}{DE}= \frac{CA}{FD}= \frac{BC}{EF}[/tex]

       [tex]\frac{14}{7}= \frac{12}{6}= \frac{16}{8}[/tex]

       [tex]\frac{2}{1}= \frac{2}{1}= \frac{2}{1}[/tex]

       Both the triangles ΔABC and ΔDEF will be similar.

  Therefore, Option B and Option C are the correct options.

Learn more about the similarity of two triangles here,

https://brainly.com/question/2499350?referrer=searchResults

Ver imagen eudora