Respuesta :

Answer:

[tex] QR = 23 [/tex]

Step-by-step explanation:

P, A, and R are collinear.

PR = 54

[tex] PQ = 4x - 1 [/tex]

[tex] QR = 3x - 1 [/tex]

To solve for the numerical length of PR, let's generate an equation to find the value of x.

According to the segment addition postulate:

[tex] PQ + QR = PR [/tex]

[tex] (4x - 1) + (3x - 1) = 54 [/tex] (substitution)

Solve for x

[tex] 4x - 1 + 3x - 1 = 54 [/tex]

Combine like terms

[tex] 4x + 3x - 1 - 1 = 54 [/tex]

[tex] 7x - 2 = 54 [/tex]

Add 2 to both sides

[tex] 7x - 2 + 2 = 54 + 2 [/tex]

[tex] 7x = 56 [/tex]

Divide both sides by 7

[tex] \frac{7x}{7} = \frac{56}{7} [/tex]

[tex] x = 8 [/tex]

[tex] QR = 3x - 1 [/tex]

Plug in the value of x into the equation

[tex] QR = 3(8) - 1 = 24 - 1 [/tex]

[tex] QR = 23 [/tex]