Find the first, fourth, and tenth terms of the arithmetic sequence described by the given rule.

[tex]A(n)=5+(n-1)( \frac{1}{6} )[/tex]

three answers

Respuesta :

[tex]A(1)=5+(1-1)(\frac{1}{6})=5+0(\frac{1}{6})=5+0=5[/tex]
[tex]A(14)=5+(5-1)(\frac{1}{6})=5+4(\frac{1}{6})=5+\frac{4}{6}=5\frac{2}{3}[/tex]
[tex]A(10)=5+(10-1)(\frac{1}{6})=5+9(\frac{1}{6})=5+\frac{9}{6}=6\frac{1}{2}[/tex]

Answer:

The first term is [tex]A(1)=5[/tex]

The fourth term is [tex]A(4)=\frac{11}{2}[/tex].

The tenth term is [tex]A(10)=\frac{13}{2}[/tex]

Step-by-step explanation:

Given : Arithmetic sequence  [tex]A(n)=5+(n-1)( \frac{1}{6} )[/tex]

To find : The first, fourth, and tenth terms of the arithmetic sequence described by the given rule?

Solution :

Arithmetic sequence  [tex]A(n)=5+(n-1)(\frac{1}{6})[/tex]

Substitute, n=1,4,10 to find the given terms

Put n=1,

[tex]A(1)=5+(1-1)(\frac{1}{6})[/tex]

[tex]A(1)=5+(0)(\frac{1}{6})[/tex]

[tex]A(1)=5[/tex]

The first term is [tex]A(1)=5[/tex]

Put n=4,

[tex]A(4)=5+(4-1)(\frac{1}{6})[/tex]

[tex]A(4)=5+(3)(\frac{1}{6})[/tex]

[tex]A(4)=5+\frac{1}{2}[/tex]

[tex]A(4)=\frac{11}{2}[/tex]

The fourth term is [tex]A(4)=\frac{11}{2}[/tex].

Put n=10,

[tex]A(10)=5+(10-1)(\frac{1}{6})[/tex]

[tex]A(10)=5+(9)(\frac{1}{6})[/tex]

[tex]A(10)=5+\frac{3}{2}[/tex]

[tex]A(10)=\frac{13}{2}[/tex]

The tenth term is [tex]A(10)=\frac{13}{2}[/tex]