contestada

Suppose line segment AB has one endpoint at A(0, 0). What are the coordinates of B if (5, 3) is 1/3 of the way from A to B?

Respuesta :

Answer:

[tex]B(x_2,y_2)= (20,12)[/tex]

Step-by-step explanation:

Given

[tex]A = (0,0)[/tex]

[tex]Ratio; m : n = 1 : 3[/tex]

[tex]Point\ at\ 1 : 3 = (5,3)[/tex]

Required

Coordinates of B

This question will be answered using line ratio formula;

[tex](x,y) = (\frac{mx_2 + nx_1}{m + n},\frac{my_2 + ny_1}{m + n})[/tex]

In this case:

[tex](x,y) = (5,3)[/tex]

[tex](x_1,y_1) = (0,0)[/tex]

[tex]m : n = 1 : 3[/tex]

Solving for [tex](x_2,y_2)[/tex]

[tex](x,y) = (\frac{mx_2 + nx_1}{m + n},\frac{my_2 + ny_1}{m + n})[/tex] becomes

[tex](5,3) = (\frac{1 * x_2 + 3 * 0}{1 + 3},\frac{1 * y_2 + 3 * 0}{1 + 3})[/tex]

[tex](5,3) = (\frac{x_2 + 0}{4},\frac{y_2 + 0}{4})[/tex]

[tex](5,3) = (\frac{x_2}{4},\frac{y_2}{4})[/tex]

Comparing the right hand side to the left;

[tex]\frac{x_2}{4} = 5[/tex] -- (1)

[tex]\frac{y_2}{4} = 3[/tex] -- (2)

Solving (1)

[tex]x_2 = 5 * 4[/tex]

[tex]x_2 = 20[/tex]

Solving (2)

[tex]y_2 = 3 * 4[/tex]

[tex]y_2 = 12[/tex]

Hence;

[tex]B(x_2,y_2)= (20,12)[/tex]

Otras preguntas