Respuesta :
Answer:
[tex]B(x_2,y_2)= (20,12)[/tex]
Step-by-step explanation:
Given
[tex]A = (0,0)[/tex]
[tex]Ratio; m : n = 1 : 3[/tex]
[tex]Point\ at\ 1 : 3 = (5,3)[/tex]
Required
Coordinates of B
This question will be answered using line ratio formula;
[tex](x,y) = (\frac{mx_2 + nx_1}{m + n},\frac{my_2 + ny_1}{m + n})[/tex]
In this case:
[tex](x,y) = (5,3)[/tex]
[tex](x_1,y_1) = (0,0)[/tex]
[tex]m : n = 1 : 3[/tex]
Solving for [tex](x_2,y_2)[/tex]
[tex](x,y) = (\frac{mx_2 + nx_1}{m + n},\frac{my_2 + ny_1}{m + n})[/tex] becomes
[tex](5,3) = (\frac{1 * x_2 + 3 * 0}{1 + 3},\frac{1 * y_2 + 3 * 0}{1 + 3})[/tex]
[tex](5,3) = (\frac{x_2 + 0}{4},\frac{y_2 + 0}{4})[/tex]
[tex](5,3) = (\frac{x_2}{4},\frac{y_2}{4})[/tex]
Comparing the right hand side to the left;
[tex]\frac{x_2}{4} = 5[/tex] -- (1)
[tex]\frac{y_2}{4} = 3[/tex] -- (2)
Solving (1)
[tex]x_2 = 5 * 4[/tex]
[tex]x_2 = 20[/tex]
Solving (2)
[tex]y_2 = 3 * 4[/tex]
[tex]y_2 = 12[/tex]
Hence;
[tex]B(x_2,y_2)= (20,12)[/tex]