Answer:
[tex]d = 2\sqrt{145}[/tex]
Step-by-step explanation:
Use the Distance Formula to help you determine the distance between the two following points ( [tex](-12, 1)[/tex] and [tex](12, -1)[/tex] ):
-Distance Formula:
[tex]d = \sqrt{(x_{2} - x_{1}) ^2 + (y_{2} - y_{1})^2}[/tex]
(where [tex]( x_{1}, y_{1})[/tex] represents the first point, and [tex](x_{2}, y_{2})[/tex] represents the second point)
-Apply the following points to the equation:
[tex]d = \sqrt{(12 + 12) ^2 + (-1 - 1)^2}[/tex]
[tex]( x_{1}, y_{1})[/tex] = [tex](-12, 1)[/tex]
[tex](x_{2}, y_{2})[/tex] = [tex](12, -1)[/tex]
-Solve the equation:
[tex]d = \sqrt{(12 + 12) ^2 + (-1 - 1)^2}[/tex]
[tex]d = \sqrt{(24)^2 + (-2)^2}[/tex]
[tex]d = \sqrt{576 + 4}[/tex]
[tex]d = \sqrt{580}[/tex]
[tex]d = 2\sqrt{145}[/tex]
Therefore, the distance is [tex]2\sqrt{145}[/tex].