Respuesta :

Answer:

[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{32 \frac{6}{20} \: \: \: {ft}^{2} }}}}}[/tex]

Option D is correct.

Step-by-step explanation:

Length of the rectangle = [tex] \sf{6 \frac{4}{5} \: ft}[/tex]

Width of the rectangle = [tex] \sf{4 \frac{3}{4} } \: ft[/tex]

Finding the area of a rectangle having length of [tex] \sf{6 \frac{4}{5} \: ft}[/tex] and width of [tex] \sf{4 \frac{3}{4} } \: ft[/tex]

[tex] \boxed{ \sf{area \: of \: a \: rectangle = length \times width}}[/tex]

[tex] \dashrightarrow{ \sf{6 \frac{4}{5} \times 4 \frac{3}{4} }}[/tex]

Convert the mixed number into improper fraction

[tex] \dashrightarrow{ \sf{ \frac{6 \times 5 + 4}{5} \times \frac{4 \times 4 + 3}{4}}} [/tex]

[tex] \dashrightarrow{ \sf{ \frac{30 + 4}{5} \times \frac{16 + 3}{4} }}[/tex]

[tex] \dashrightarrow{ \sf{ \frac{34}{5} \times \frac{19}{4}}} [/tex]

To multiply one fraction by another, multiply the numerators for the numerator and multiply the denominators for its denominator

[tex] \dashrightarrow{ \sf{ \frac{34 \times 19}{5 \times 4}}} [/tex]

[tex] \dashrightarrow{ \sf{ \frac{646}{20} }}[/tex]

Convert the improper fraction into mixed number

[tex] \dashrightarrow{ \boxed{ \sf{32 \frac{6}{20} \: \: {ft}^{2} }}} [/tex]

Hope I helped!

Best regards! :D